Email updates

Keep up to date with the latest news and content from Nutrition & Metabolism and BioMed Central.

Open Access Research

Dietary resistant starch dose-dependently reduces adiposity in obesity-prone and obesity-resistant male rats

Damien P Belobrajdic12*, Roger A King12, Claus T Christophersen12 and Anthony R Bird12

Author Affiliations

1 Commonwealth Scientific & Industrial Research Organisation (CSIRO) Food Futures Flagship, Adelaide, Australia

2 CSIRO Animal Food and Health Sciences, Adelaide, Australia

For all author emails, please log on.

Nutrition & Metabolism 2012, 9:93  doi:10.1186/1743-7075-9-93

Published: 25 October 2012

Abstract

Background

Animal studies show that diets containing resistant starch (RS) at levels not achievable in the human diet result in lower body weight and/or adiposity in rodents. We aimed to determine whether RS dose-dependently reduces adiposity in obesity-prone (OP) and obesity-resistant (OR) rats.

Methods

Male Sprague–Dawley rats (n=120) were fed a moderate-fat, high-energy diet for 4 wk. Rats that gained the most weight (40%) were classified as obesity-prone (OP) and obesity-resistant (OR) rats were the 40% that gained the least weight. OP and OR rats were randomly allocated to one of six groups (n=8 for each phenotype). One group was killed for baseline measurements, the other five groups were allocated to AIN-93 based diets that contained 0, 4, 8, 12 and 16% RS (as high amylose maize starch) for 4 wk. These diets were matched for total carbohydrate content. At 0, 4 and 7 wk from the start of the study insulin sensitivity was calculated by homeostasis model assessment of insulin resistance (HOMA-IR) and adiposity was determined by dual-energy X-ray absorptiometry (DXA). At 8 wk, rats were euthanized and fat pad weights, intestinal digesta short chain fatty acid (SCFA) pools and plasma gut hormone levels were determined.

Results

Obesity prone rats gained less weight with 4, 12 and 16% RS compared to 0% RS, but the effect in OR animals was significant only at 16% RS. Irrespective of phenotype, diets containing ≥8% RS reduced adiposity compared to 0% RS. Energy intake decreased by 9.8 kJ/d for every 4% increase in RS. All diets containing RS increased total SCFA pools in the caecum and lowered plasma GIP concentrations compared to the 0% RS, whereas plasma GLP-1 and PYY were increased when the diet contained at least 8% RS. Insulin sensitivity was not affected by RS.

Conclusion

RS in amounts that could be potentially consumed by humans were effective in reducing adiposity and weight gain in OP and OR rats, due in part to a reduction in energy intake, and changes in gut hormones and large bowel carbohydrate fermentation.

Keywords:
Resistant starch; Adiposity; Incretin; Short chain fatty acid; Insulin sensitivity